

River Bank

INSPIRE • EMPOWER • ACHIEVE

Calculation policy
 2023

River Bank Primary School

2023

Addition - Year 1

Addition - Year 2

Method	Example	
Use related facts to add tens. Use related facts to learn number bonds to 100 (using tens).		
Using partitioning to add across 10. Partition the smaller number using knowledge of number bonds to 10 .		
Adding 3 one-digit numbers. Use different coloured counters to add 3 one-digit numbers. Use number bonds to add 3 one-digit numbers.	Use counters to calculate $7+5+4$ $7+5+4=16$	$\begin{aligned} & 7+6+3=16 \\ & 7+3=10 \\ & 10+6=16 \end{aligned}$
Adding 2 two-digit numbers not across 10. Partition the tens and ones first. Then, add the ones first and then then tens.		
Adding 2 two-digit numbers across 10 . If a column goes across 10, we must exchange In the example, 5 ones +7 ones $=12$ ones. Ten ones will be exchanged for one ten.	Use base 10 to calculate $45+37$	 There are 8 tens and 2 ones. $80+2=82$ $45+37=82$

Addition- Year 3

Add a two-digit number and a three-digit number using the column method.
Reinforce the importance of lining the place value columns correctly.
$252+23=275$

$+$| H | T | O |
| :---: | :---: | :---: |
| 2 | 5 | 2 |
| | 2 | 3 |
| 2 | 7 | 5 |

Addition - Year 4

$£ 437$ rounded to the nearest 100 is $£ 400$				
£266 rounded to the nearest 100 is $£ 300$				
The estimated answer is $£ 400+£ 300=£ 700$				
				7
	+			6
				3

Addition - Year 5 and 6

Adding decimals up to the thousandth's column.	2	3.	6	+	7.	5	4	2	$=$	3	1	1	4	2
Line the place value columns correctly. Put place holders into the empty columns.														
					2	3	6	0	0					
				+	0	7	5	4	2					
Exchange if a column goes across 10 .					3	1	- 1	4	2					
					1	1								

Subtraction Year 1

Method	Example	
Find a part - understand that whole is made up of parts. If we have the whole and one part, we can find the missing part. This will be done using number bonds rather than formal subtraction.		
Finding a part as subtraction. Still using number bonds to find a part, they will represent them using a subtraction symbol. Children will understand that whole - part = part.	There are 5 tanks in a shop. 3 of the tanks have fish in them. How many tanks do not have fish in? \square \square \square \square $5-3=2$ "Five minus three is equal to two"	
Subtraction as taking away. This will be the first time they're introduced to subtraction as 'taking away'. This will be done first without the subtraction symbol. Children will be taught to 'cross out' what they are taking away. In step 2, the subtraction symbol will be formally used.	Step 1 First there were 6 children in the pool. Then $\underline{3}$ children got out. Now there are $\underline{3}$ children in the pool. First there were 9 bottles of water. Then 4 bottles were drunk. Now there are 5 bottles of water.	Step 2 First there were 5 birds. Then 3 birds flew away. Now there are $\underline{2}$ birds on the tree. $5-3=2$ First there were \geq counters. Then $\underline{2}$ counters were taken away. Now there are 5 counters. $7-2=5$

Subtractionusinga number
line-
Children will be taught to
count back from the bigger
number.

Subtraction Year 2

Method	Example	
Subtract across 10. Children will use their number bonds to partition numbers subtract across 10. $\begin{aligned} & 12-4= \\ & 12-2=10 \\ & 10-2=8 \end{aligned}$		$14-6=8$ $14-4=10$ $10-2=8$ I can partition 6 into \qquad and 2 and -
Subtract from 10 - Use number bonds to ten to subtract from multiples of ten.	$20-4=16$ Complete the sentence. $\text { If } 10-4=6, \text { then } 20-4=16$	
Subtract two 2-digit numbers without crossing ten - do this by partitioning the number into tens and ones (always start subtracting with the ones)	Use base 10 to calculate $67-37$ Complete the sentences. $\underline{7}$ ones $-\underline{7}$ ones $=\underline{0}$ ones 6 tens - \qquad	

Subtract two 2-digit numbers across ten. To do this, you will need to exchange a ten into 10 ones.

This can be done practically using base ten (diennes).

Use a number line to subtract the ones of the smaller number before then subtracting the tens.

$43-16=$
$43-16=$

Subtract the ones
Subtract the tens

Year 3 - Subtraction

Subtract 1 across ten in a 3digit number. Use a number line and knowledge of number bonds.	$321-7$ The previous multiple of 10 before 321 is 320
Subtract 10 across 100. Use number lines and knowledge of number bonds. $430-60$ The previous 100 is $\begin{aligned} & 400 \\ & 430-30=400 \\ & 60-30=30 \\ & 400-30-370 \end{aligned}$	

Subtract two numbers without exchanging using a formal written method. Place value columns must be lined up and always begin subtracting at the ones.	$438-325=$								
	Hundreds	Tens	Ones						
	17	$\mathrm{l}_{\text {瞋 }}$:		H				
	7 7		\%		4				
	-				(3)				
					1	1			
	1	1	3						
Subtracting with exchanging. Children must know to start with the ones.	$451-325=126$							1 - 5 we cannot do. So we must exchange one of the tens into 10 ones. Now we do $11-5=6$.	
	Hundreds	Tens	Ones						
	$\begin{aligned} & \varnothing \varnothing \\ & \varnothing \varnothing 8 \end{aligned}$	$\varnothing \varnothing$	1 1 1 1 1 1 8 88 88 1						
						T O			
If the digit in the top number is smaller than the digit below, you must exchange. Use this method tsubtract a 2-digit number from a-digit number.						${ }^{4}{ }^{1} 1$			hen 4 tens- 2 tens $=2$ tens.
				-	3	25			
						26			hundreds 3 hundreds = 1 hundred.
	1	2	6						
	$201-37=$							When there is a place holder on the top line, you exchange from the next digit on the left.	
	Hundreds	Tens	Ones						
	\bigcirc								
						37			
					1				
	1	6	4						

Year 4- Subtraction

Year 5 and 6-Subtraction

Method	Example			
Subtract whole numbers with more than four digits with and without exchanging. Line the place value columns up correctly and begin subtracting in the place value column with the smallest value.		$\begin{array}{r} 36582 \\ -13201 \\ \hline 23381 \\ \hline \end{array}$ $\begin{array}{r} 17 \\ 365812 \\ -1320 \\ -13 \\ \hline 2337 \\ \hline \end{array}$		
Subtract decimals with the same number of decimal places.	78.199 $-\quad 4.43$ 3.76	$\begin{array}{r} 0 \mathcal{A}^{1} 2 .{ }^{0} \boldsymbol{A}^{1} 5 \\ -\quad 7.0 \\ \hline 5.0 \\ \hline 7.0 \end{array}$		
Subtract decimals with different numbers of digits.	$6.73-1.3=$Ones Tenths Hundreaths 0 5 4 3		ill the empty colu paceholder. $2-2.27=4.93$	ns with a

Subtract decimals from a whole number.

Put placeholders into the empty columns so that there is an even number of digits.

When there are multiple zeros, you must continue to exchange until you can
 subtract in the smallest value place value column.

Year 1 - Multiplication

Method	Example
Children will count in groups of the same number of objects and add them.	
Make arrays to support multiplication and to show multiplication as repeated addition.	

Making doubles and seeing them as two equal groups.		$10+10=20$ Double 10 is 20

Year 2 multiplication

Method	Example	
Identify and make equal groups. Know that 3 groups of 4 and 4 groups of 3 lead to the same total introducing the concept of commutativity.	There are 6 equal groups with 3 in each group. There are 18 cubes altogether. $3+3+3+3+3+3=18$	$6+6+6=18$ There are 3 equal groups with 6 in each group. There are 18 altogether.
Using the multiplication symbol making the links between multiplication and repeated addition. Both repeated addition and multiplication sentences will be written.	There are 3 equal groups with 4 in each group. $\begin{array}{r} 4+4+4=12 \\ 3 \times 4=12 \end{array}$	$3 \times 4=12$ "3 lots of 4 is equal to 12 " " 3 groups of 4 is equal to 12" "3 multiplied by 4 is equal to 12 "
Using arrays to show that multiplication is commutative.	$\begin{array}{r} 6+6+6=18 \\ 3 \times 6=18 \end{array}$ $\begin{aligned} 3+3+3+3+3+3 & =18 \\ 6 \times 3 & =18 \end{aligned}$	

Learn the 2-, 5- and 10-times tables as multiplication.

Year 3 - Multiplication

Method	Example	
Identifying multiples of 2,5 and 10 . Know that a multiple of 2 can be divided into 2 equal groups. Recognise that all even numbers are multiples of 2 . Recognise that all numbers with a 5 or 0 in the ones column are multiples of 5 . Recognise that all numbers with 0 in the ones column are multiples of 10 .		
Multiply by 3 and 4 . Learning the 3 - and 4 -times tables.	There are \qquad 3 groups. There are \qquad 3 in each group. There are \qquad 9 altogether. \qquad $\times 3$ $=9$ \qquad	
Multiplying by 8 and learning the 8 times tables. Use links to other times tables to learn the 8 times tables. Knowing the 8 times tables are double the 4 times tables.		

Multiplication - Year 4

Know that when we multiply by 10 , the digits shift one place value column to the left.

When multiplying by $1 \underline{00}$ the digits shift two place value columns to the left.

$\begin{array}{ll}20 \times 10=200 & 20 \\ 4 \times 10=40 & 4 \times \\ 200+40=240 & 2, C\end{array}$

2,000
$=400$
$=2,400$

$4 \times 4=16$ (6 goes
into the ones column and 1 ten is exchanged)
$4 \times 2=8$ (now add the exchanged digit.
$8+1=9$
$251 \times 3=$
$!51 \times 3=753$

Multiplication years 5 and 6

Multiply a 4-digit number by a 1 -digit number.

Use the formal written method to multiply the 4digit and 1-digit numbers together.

	2	1	1	4
\times			3	
6	3	4	2	
		1		

Multiply 2-digit, 3-digit and 4 digit numbers by a 2 -digit number.

Multiply the ones by the top number and then the tens by the top number. A place holder must always be in the one's column of the second row.

Using different colours per row can help when introducing the method.

35×16			
	H	T	0
		3	5
\times		1	6
	2	1	0

$326 \times 32=10,432$					
	Th	H	T	0	
		3	2	6	
\times			3	2	
		6	5	2	(326×2)
+	9	71	8	0	(326×30)
1	0	4	3	2	
	1	1			

Division- Year 1

Method	Example	
Making equal groups grouping Children will be given a total amount and be asked to make groups of an equal amount.	There are 6 altogether. There are 3 equal groups of 2	Each gingerbread cookie needs 3 buttons. Use 15 buttons to decorate the cookies. How many cookies can you decorate?
Making equal groups sharing Children will be given a total amount and be asked to physically share them into equal groups.	Share the muffins equally between 2 groups.	There are 8 muffins. They are shared equally between 2 plates. There are 4 muffins on each plate.

Year 2

Method	Example
Divide by 2 Children to use their knowledge of the 2 times tables todivide by 2.	The apples are put into bags with 2 apples in each bag. There are \qquad 8 apples altogether. There are \qquad 2 in each group. There are 4 groups. 8 $\div 2$ $2=$ 4 Use the number lines to work out the divisions
Halving Children to understand that when we halve, we are dividing by 2 .	
Dividing by 10 Children to use their knowledge of the 10 times tables and counting in 10 to divide by 10 .	

Division -

Finding a quarter
Children will be encouraged to share totals into four equal groups in order to see the link between finding a quarter and dividing by 4 .

There are 8 sweets altogether.
The sweets have been shared between 4 equal groups.
There are 2 in each group.
$\frac{1}{4}$ of 8 is $\underline{2}$

There are 16 footballs in a bag.
Jo takes $\frac{1}{4}$ of the footballs out.
How many footballs does she take out? 4

Year 3

Divide by 3,4 and 8
Children will explore dividing by 3,4 and 8 by sharing into equal groups and by grouping.

A party has 21 cakes. They are shared equally between 3 plates.

There will be 7 cakes on each plate. $21 \div 3=7$

The 21 cakes are divided into into groups of 3 .

There will be 7 plates of 3 cakes. $21 \div 3=7$

72 stickers are put into packs of 8
How many packs of stickers will be made?

Divide a 2digit number by a 1-digit number no exchange

Children will focus on partitioning a number into tens and ones and sharing into equal groups.

39 divided by \qquad i is equal to 13
$39 \div 3=13$

Divide a 2-digit number by a 1-digit number - flexible partitioning

Children will partition the 2digit number into two numbers that are a multiple of the divisor.
In the example to the right,
96 has been partitioned into 80 and 16 because they are both multiples of 4 and can now be divided by 4 .

Division -

Divide a 2-digit number by a

1-digit number with remainders

Each square uses 4 sticks.
Mo can make 2 squares with 9 sticks.
There is one stick remaining.
$9 \div 4=2$ remainder 1

Year 4
Divide by 6,7 and 9
Children will use their
knowledge of the-, 7 - and 9
timestables to divide.

Division -

Division - Year 5
Divide by 1,000
Children will know that when we divide by 1,00 , the number gets one thousand times smaller. The digits in the number will shift three place value columns to the right.

$$
47,000 \div 1,000=47
$$

Divide a 4-digit number by a 1-digit number with and without remainders.

Children will be introduced to the bus stop short division method for the first time.

Division - Year 6

